

Direct Current technology In the building industry

June 5th 2020

2 INITIATIVES: CHINA, CANADA, HOLLAND, USA, FRANCE

3 HOW TO MOVE FORWARD ?

WHY DC INSTEAD OF AC ?

Why DC instead of AC ?

Three basic characteristics of DC

- **1. Simple:** No frequency, No phase, No amplitude
- 2. Stability: No periodic changes, No zero crossings
- **3. Efficiency:** No reactive efficiency, High transmission efficiency

Three scenarios of DC application

- **1. Long distance transmission:** Submarine Cable, Urban Underground Cable;
- 2. High reliability power supply: Data center, Electronic production line;
- **3. High-precision control:** High-speed train, Electronic equipment control.

Why DC instead of AC ?

Driving force:

From the both sides of **supply** and **demand**, distributed power supply and DC load promote the development of DC power distribution technology.

Cleanliness

Homogenization

Electronic

Why DC instead of AC?

What changed that makes DC useful again?

Major Reason #1: The DC Transistor

© 2020 (Merge

The basic DC-DC voltage converter will take the current and pass it through a "switching element". This turns the signal into a square wave, which is actually AC. The wave then passes through another filter, which turns it back into a DC signal of the appropriate Voltage necessary.

Major Reason #3: DC Energy Storage

Rechargeable batteries, where energy is stored electrochemically, are

one of the most cost-effective energy storage technologies. For large-

scale energy storage, there are a number of advanced battery technologies to consider such as super capacitor, nickel, lithium, lead-

acid, flow, metal-air batteries, and so on,

What changed that makes DC useful again?

Power electronics is the application of solidstate electronics to the control and conversion of electric power. ... The power range is typically from tens of watts to several hundred watts. In industry a common application is the variable speed drive (VSD) that is used to control an induction motor.

© 2020 (Merge'

© 2020 (DMerge*

What changed that makes DC useful again?

Major Reason #4: DC Power Electronics

Major Reason #2: Renewable DC Power Generation

Solar PV cells generate electricity by absorbing sunlight

and using that light energy to create an electrical current.

single solar panel, and the current created by all of the

cells together adds up to enough electricity to be useful.

There are many photovoltaic cells within a

- Single voltage (380VDC) global standards fewer OEM equipment variations potential equipment cost reduction
- · Simplicity , scalability , ease of deployment
- · High reliability elimination of series conversion steps
- Power quality maintained (vs AC eco-mode)
- · No need for phase balancing
- · Elimination of harmonics impact
- Lower Total Cost of Ownership
- · Migration path to true electric power network: Enernet

Why DC instead of AC ?

Advances in DC research: simultaneous research at home and abroad, supply-side leading demand, equipment leading applications, and industry leading civilian use.

EXAMPLE OF A CHINESE INITIATIVE

2 A Chinese initiative by Institute Of Building Research (IBR), Shenzhen

More than 20 Chinese and foreign units jointly initiated the establishment

Combined "Source, Grid, Load, Storage" Combined "Production, learning, research, us

Options	Total	Proportion
Technical standard research	25	60.98%
Power grid planning and design	6	14.63%
DC equipment development	8	19.51%
DC electrical development	5	12.2%
Switch and socket development	6	14.63%
Automatic control system development	18	43.9%
Power storage technology research and development	10	24.39%
Other	8	19.51%
Effective number of people	41	

Mobile Lab

DC Open Lab

Full DC building demonstration

DC Open Lab:

Experimental verification:

1. DC power distribution efficiency under distributed energy access conditions;

2. Safety and stability of building DC power distribution;

3. Application of different DC end product combinations.

DC power load

DC Open Lab

Converter and active protection equipment

2 What we have done

DC Building Demonstration Exploration: Future Center

Project Location: Pingdi Street, Longgang

District, Shenzhen

Land area: 11037.76m²

Building area: 62 523m²

Building height: 99.8m

Main functions: R&D, office, experiment, pilot plant test, display, education, residence, Cultural exchanges and other functions, Explore the future of low carbon life work mode. Building DC system design range: 5000m² office + 50 residential

Solve the problem of demonstration and promotion of net zero-energy building technology in summer hot winter and warm regions and even the world's same climate zone

A Chinese initiative: International Low Carbon City

DC Building Demonstration Exploration: R3 module DC system solution

2 A Chinese initiative: International Low Carbon City

2 A Chinese initiative: International Low Carbon City

DC Building Demonstration Exploration:

External power supply condition

Each 4MVA voltage source converter (VSC) is arranged at 110kV Xiangyuan Station and Yuhong Station. It provides DC power supply interface to Low Carbon City Future Center, Low Carbon City Convention Center and Shennan Circuit Company in a "hand in hand" manner.

- System rated power supply capacity 8MW, rated voltage class ±10kV
- Future central energy router 2.6MW, including DC load 1.6MW, AC standby power supply 1MW

External DC power supply plan

EXAMPLE OF A DUTCH INITIATIVE

EXAMPLE OF A US INITIATIVE

Home About * Standards * Join * News & Events * Resources * Contact us

Open industry association

Leading the rapid adoption of safe, resilient, economical and sustainable DC and hybrid AC/DC distributed energy microgrid power systems for buildings and communities. This is accomplished through EMerge Alliance vanguard standards and promoting market development.

Become a Member!

Our Members

"Members of the Alliance include products manufacturers, software and service providers, system design, integration and construction firms, relevant governmental agencies, trade groups and academia as well as public and private utilities."

Through these organizations, a broad range of interests are represented in the generation and utilization of both standard and alternative electric energy. See who's involved at each membership level.

Pathway to Net Zero Energy

USGBC CASE STUDY: AGU Headquarters Renovation

Washington

BUILDING ENVELOPE

EXAMPLE OF A CANADIAN INITIATIVE

Regus Gastown goes DC

Commercial real estate: Regus has launched a new co-working brand with Gastown project

BENEFITS

- Cost and time-saving installation
- Wide selection of high quality driverless light fixtures to support any range of design
- Fully integrated wireless lighting controls system
- Reduced total cost of ownership (TCO) thru significant maintenance and energy savings
- 10-year warranty

	Chicago	Toronto	Vancouver
Year Complete	2019	2018	2018
DC Power \$/SF	\$1.24	\$0.90	\$1.14
Control \$/SF	\$1.15	\$0.90	\$1.18
Total SF Lighting	71,000	15,204	24,500
Lighting Watts	32,145	8,250	13,000
Lighting Watts/SF	0.45	0.54	0.53

Sidewalk Labs

Here at 307 we worked with partners to pilot common appliances using digital electricity.

Digital electricity is most efficient in delivering Direct Current (DC) power to devices, whereas typical household outlets deliver Alternating Current (AC) power. Today, the vast majority of devices and appliances

used in the home are in fact DC powered internally, and can be powered by both AC or DC. So far we've successfully deployed these washing machines and dryers, vacuum cleaners, ceiling fans, a

vacuum cleaners, ceiling fans, a refrigerator, phone and computer charging stations, and a television. We also have photovoltaic panels outside that connect to our digital electricity system and provide renewable energy.

Look around and you'll see power for all these items coming over a lightweight cable.

EXAMPLE OF A FRENCH INITIATIVE

PROJECT in Saint-Ouen

Chaque port PoE délivre une puissance électrique de 100 W (soit 5600 W par switch). Gestion Technique du Bâtiment (GTB) totalement IP grâce au POE (data + DC).

PROJECT in NANTES

 Proposal title
 HybridLayers

 Proposal full title
 Hybrid AC/DC Grid Layers for Future

 Call ID
 LC-SC3-ES-10-2020

 Type of action
 IA Innovation Action

 Coordinator
 VTT Technical Research Centre of Finland Ltd

List of participants

No	Participant organisation name	Acronym	Country
1	VTT Technical Research Centre of Finland Ltd	VTT	Finland
2	Electricité de France	EDF	France
3	SP Energy Networks	SPEN	UK
4	Städtische Werke AG	NSG	Germany
5	Elektro Ljubljana d.d.	LJU	Slovenia
6	Alginet Distribución Energía Eléctrica S.L.U.	ADEE	Spain
7	Schneider Electric Industries SAS	SCHN FR	France
8	Schneider Electric España SA	SCHN ES	Spain
9	Ibérica de Aparellajes S.L.	IBER	Spain
10	Software Imagination & Vision S.R.L.	SIM	Romania
11	Galéo	GAL	France
12	Artelia	ART	France
13	PNO Innovation N.V	PNO	Belgium
14	Fraunhofer Institut für Energiewirtschaft und Energiesystemtechnik	FRA	Germany
15	Instituto Tecnológico de la Energía	ITE	Spain
16	University of Strathclyde	USTRATH	UK
17	Asociación Española de Normalización	UNE	Spain
18	European Distributed Energy Resources Laboratories e. V. (DERlab)	DER	Germany

DC R&D project International groupment Hybrid AC/DC Grid

Electric power system is increasingly merging with other sectors: for instance district heating/cooling network, gas network or transportation system. Consequently, management of more complex system increasingly happens through communication networks and data platforms. Also end-user appliances are more connected to internet and cloud services. This development results in huge amount of new data points with access to electricity network as well. Cybersecurity is definitely an increasing concern in terms of system resilience and needs to be addressed in all smart grid architectures.

Direct Current (DC) based technology can offer solutions addressing these challenges. Since most electronic devices are by default DC, their system integration can be enhanced when interconnected through DC. For instance PV panels, fuel cells or batteries operate as DC. Even though they typically need voltage level conversions, the effectiveness of DC/DC conversion is better than AC/DC conversion. More generally, wider use of DC can reduce the number of conversion throughout the whole system, leading to better overall system efficiency. Figure 1.2 depicts the amounts of conversion when integrating various components.

Figure 1.1. Cornerstones of energy system.

Figure 1.2. Needed conversions while integrating different components.¹

Cost Savings on a 20MW Solar + Storage System

Efficiency in a 20MW Solar + Storage System

DC-COUPLED

- 3 power electronic conversions
- 1 battery charge and discharge
- 1 transformer conversion

Efficiency = 89.2%

= .95 * .982 * .982 * .984 * .99

Data Source: Schneider Electric Case Studies

AC-COUPLED

- 3 power electronic conversions
- 1 battery charge and discharge
- · 3 transformer conversions

Efficiency = 86.2%

= .95 * .984 * .99 * .99 * .984 * .984 * .99

PROJECT in NANTES

Immeuble de bureau de 2846 m² Panneaux PV en toiture Cogénération à huile

Accord de principe avec Enedis et MOA: Deux raccordements seront prévus pour les bureaux depuis le transformateur public:

> un raccordement AC pour les services généraux un raccordement DC avec convertisseur en pied d'immeuble pour les plateaux de bureaux

Fournisseurs d'énergie pouvant refacturer en DC à confirmer.

DC EQUIPMENTS available in France

LED LIGHTING

Manufacturer	Comment	Power & Voltage
Philips LED panels	With DC driver, Available in UK	53-77 V, 16-24 W
Zumtobel LED lights	bel LED lights With DC driver, Available in France	
LITED	With DC driver, Available in France	48 V, 15-25 W
CLAREO	With DC driver, Available in France	

For a PoE distribution, the DC driver is not required.

ELECTRICAL BLINDS

Many and various motors technology are suitable for any types of blinds Voltage inputs are limited between 12 VDC and 24 VDC (48 VDC not found)

Manufacturer	Model	Power (W)	Voltage	
	Motor T3.5 E Hz DC		10) (5.0	
SIMU	Radio Motor T3.5 ESP Hz DC 17, 26,30		or 24 VDC	
	SIMU T5 CC Motor		0.2.100	
CAME	VOILA-Shutter system	75	24 VDC	
CAME	Edison B3 - φ 25	10	12 VDC	
ELERO	SunTop L-868 DC	120	12 VDC	

LAPTOPS

Nowadays PCs contain USB-C port for charging and transferring data.

 \blacktriangleright Max power by USB-C port found \rightarrow 100W, which limits the choice of laptops

Manufacturer	Model	Charging ports	
Lenovo	ThinkPad L590	2 USB-C ports – 65W	
Dell	Latitude 3301	USB C 3.1	

WALL PLUGS

USB-C 100W WALL SOCKET OUTLET

The standard socket connected to a 350VDC grid. For powering small DC devices up to 100W conform the PD standard in the USB-C.

OCHNO USB-C PLATFORM

- Cloud-managed USB-C socket for integration into different physical environments
- Integrated power and communication infrastructure, connect anything with one cable
- Ochno Operated delivers additional IoT, power management and security services to any connected device

OCHNO USB-C PLATFORM

Includes a range of smart services to help get a full look at the work environment.

REFRIGERATORS

Used in offices, boats, camping car and trucks.

Manufacturer	Model	Power	Voltage
Domestic	DOMETIC CRX 50 U	40W	12/24VDC
	DOMETIC RMD 10.5T	170W	12VDC
	DOMETIC COOLMATIC CRX 50 S	40W	12/24VDC
Thetford	T1090	48 W / 24 W	12 VDC

VENTILATION

The company *ebm-papst* provides a range of solution:

Technical Values	Axial Fan	Diagonal Fan	Centrifugal fan	
Voltage	5-75 VDC, 11-440 VAC	9-72 VDC	6-72 VDC	
Air flow quality	Up to 1220 m ³ /h	Up to 1100 m³/h	Up to 1600 m³/h	
Power Consumption	0.1-275 W	19-360 W	1-190 W	
Application	Up to 1500 Pa	Up to 1500 Pa	Up to 5200 Pa	

DC EV Charger

No EU manufacturer of DC EV Charger

One Chinese manufacturer offers DC EV Charger :

Manufacturer	Power (kW)	Range for 30min of charging (miles)	DC Input	Voltage (V)
SETEC Power	50	75	Solar / PV	<400

DC PROTECTION

Several manufacturers can provide DC breakers for example in the US and Chinese markets.

Cost to decrease as demand increases.

Equipment not found yet for the French market

Printers Video projectors Heat pumps Electrical water tank heater

HOW TO MOVE FORWARD ?

Difficulties and challenges in building DC

	AM		
Standard	Product	Coordination	Understanding
Lack of design	Product	Different	Public awareness
standards,	have not yet	industries	of safety and
testing	been	have different	stability,
standards,	marketed and	views, Lack of	Professional
acceptance	serialized.	coordination.	ability
criteria.			improvement.

Thank You